Tutorial to the program KPLOT

After starting the program KPLOT, a header is written on the screen indicating the release,
followed by a “>" as a prompt. Now commands can be entered. All commands consist of
1 to 4 letters. Upper/lower case is ignored, but in the examples they are always given as
capital letters. These commands may be followed by parameters. The following example
illustrates the procedure:

First one enters a title:

>T ’NaCl, a simple example’

The command itself consists of only one letter "T’. The text following T’ is the actual title,
which is treated by the program as a string. As a rule, every string should be enclosed in
quotes. This requirement can only be waived, if the string does not contain blanks or special
characters.

Next, a unit cell is defined:

>72 5.6

This abbreviated input is sufficient, because NaCl is cubic. Using the defaults provided for
the command 'Z’, KPLOT completes the missing entries as if the entry would have been Z
5.6 5.6 5.6 90 90 90. Of course, one can always enter all six numbers explicitly

Next, we add the symmetries of the NaCl-structure. NaCl consists of two cubic face centered
lattices of Na and Cl stacked within each other. For this simple example this information is
already sufficient. First we need to provide the identity (symmetry). Since this symmetry
is already prepared on the first place of the symmetry list, we just enter

>SE 1

Equivalently, we could have entered

>3Y ’x,y,z’

of course. The rest of the symmetries are generated by the command

>GTY F

which introduces the F-centering.
If you want to see the symmetries now present in the symmetry list, enter

>0S8Y;

The symmetries will be shown as symbols.

Next the parameters of the atoms (coordinates, name, extension, etc.) are supposed to be
entered. It is strongly advisable to have two dummy atoms at the beginning of the parameter
list. In fact, at many places and defaults in the program it is assumed that these two atoms
are present. Since only explicitly specified portions of the parameterlist will be plotted, these
dummy atoms do not interfere with the proper drawing of structures. These two dummy
atoms are prepared already and may be introduced into the parameter list by simply typing

1

>AE 2

The rest of the atoms have to be entered explicitly:

>ATOM Na 1 O 0 0
>ATOM €1 1 0.5 0.5 0.5 0.4

Note that not all parameters have to be supplied explicitly. KPLOT sets default values at
many places when input is omitted. E.g., in our case, the radius of Na 1 is automatically set
to 0.3, while the radius for Cl is explicitly set to 0.4. The atom parameters can be shown on
the screen by typing

>0A ;

Entering the semicolon prevents prompting for a range. If only "OA” is entered, KPLOT
prompts ”from,to?” expecting then two integer numbers indicating from what position to
what position in the parameter list the parameters are to be displayed. In our case ”1,4”
would show the complete list. Note that the first integer defaults to ”3” | since usually the
dummy atoms are only of minor interest.

At this stage, the basic input is complete. Now the atoms which are to be plotted have to
be compiled in a list. E. g., if we want to see one unit cell, we use the command

>ATB 1 34 0.5 0.5 0.5

The command "ATB” ("add triclinic box”) results in a search for all atoms which are in a
box with the center at atom 71”7 having walls with distances of 0.5 lattice units in positive
and in negative directions from the center. This is exactly the content of the unit cell,
because the (dummy) atom at no. 1 in the parameter list is in the centre of the unit cell.
All the atoms found are automatically stored in a dedicated list (the so-called code list).

In order to achieve a good visual representation of the structure, it has to be rotated. This
is done using the commands

>DK 2 18
>DK 1 18

Note that the atoms compiled for plotting in the code list are not plotted automatically.
Explicit commands have to be entered defining which atoms are to be plotted and how they
are to be connected.

>PK 3 4
>VBR 3 3 4 4 3

Still no plot is produced, since KPLOT only stores the above plot commands in a plot
command list, but does not execute them. As a final preparatory step, a scaling factor has
to be calculated to make the picture fit on the screen:

>BF

Now the command
>EPU

should generate the following plot:

Fig. 1: NaCl

If one wants to generate a stereoscopic pair of pictures, two copies of the structure have to
be plotted side by side, but each rotated (by a slightly different angle) somewhat around the
y axis. For each plot only half of the screen is available now; thus the field has to bisected:

>HF

To produce a steroscopic plot, only two commands have to be entered: ”calculate scaling
factor” ("best fit”) and ”stereo plot”:

>BF ; STPU

)
]

’iT!T
\r‘z

|

—
7T
\?
./

7

L/

£

Fig. 2: Stereoscopic plot of NaCl

One notices that more than one command can be given within one command line. The
individual commands have to be separated by a semicolon. This delimiter may always be
entered, but is not necessary at the end of the line .

3

% .

After start-up, KPLOT operates in dialogue mode. As a consequence, a ”;” appears when
a command is expected. If a command is entered, for which parameters are expected, but
no (or not sufficient, including defaults) parameters are provided, a prompt appears listing
the expected input variable. This is quite useful; e.g. if one does not know what detailed
input is expected for a certain command, one just enters the command alone. Example:

> 0A
from,to? 3,4

Very often one wants to use the default values and suppress prompting. This can achieved
easily by appending a slash, a semicolon or a comma. Example:

> 0A,

Usually it is more convenient not to type in all commands of the basic input describing a
structure (such as atomic parameters, cell parameters etc.). Instead, one can prepare a file
using a text editor containing the basic data. If such a file is read in, prompting makes no
sense, of course. Therefore, one can switch off the prompting by using 'NDLG’. Thus, a file
which is going to be read by KPLOT, should look like:

NDLG
..... (KPLOT commands)
CLSE / DLG

Such a file NACL.DAT containing KPLOT commands defining the basic input can be read
in by
>GET NACL.DAT

Analogously a file containing the current information available to KPLOT (cell parameters,
parameter list, code list, symmetry list, etc.) can be created by

>PUTC NACLNEW.DAT

The usage of ’'GET’ and '"PUTC’ is more subtile than can be explained here. Note that the
file NACL.DAT m u s t exist when using 'GET’, while the file NACLNEW.DAT should not
already exist when using 'PUTC’, since it would be overwritten automatically, without any
warning.

In the next example, we get to know a very powerful command. First we prepare an input

file.

NDLG

T ’Cuban - example of a molecular structure’

Z 5.34 % x 72.26 72.26 72.26

HMS °R3-R’ ! A specification HMS ’R3-’ will not suffice, since there
! exist more than one setting

AE 2

ATOM C 1 -.18711 .19519 .10706

ATOM C 2 .11546 .11546 .11546

ATOM H 1 -.32460 .34680 .18480 .2

ATOM H 2 .21 .21 .21 .2

CLSE;DLG

This file (assumed to have the name CUBANE.KPL) can then be read in by

>GET CUBANE.KPL

In order to obtain a plot, a very simple but powerful command is available:

>FM x H
FM means: find molecule. Here, KPLOT untertakes the following steps:

e All atoms belonging to the molecule(s) are searched for, according to a distance crite-
rion. The specification of "H” in the example above is an option which causes hydrogen
atoms to be also included in the search. The search for atoms is performed using an
internal table where the most common interatomic distances are stored.

e Plot commands are generated for plotting atoms as polygons with 30 vertices and
bonds as lines.

e An optimisation of the view is performed in order to minimize overlap of atoms in the
plot.

e The scaling factor is determined.

Thus, the user only needs to enter

> EPU

in order to get the plot

Fig. 3 Cubane (I)

In our case this optimisation has the consequence that the model looks rather oblique. This
should be improved now:

>DKSV 3 355505
>BF
>EPU

Fig. 4: Cubane (II)

The two numbers designate uniquely two atoms, and hence a vector from the first to the
second atom. Using 'DKSV’ the coordinate system is rotated in such a way that this vector
becomes vertical (on the screen).

The drawing is still very rough, and we want to make it nicer. Therefore we remove the plot
commands that had been generated automatically:

>LPK

Now we enter new ones:

>PK 3 6
>BR 3 4 3 6 1.7
>EPU

A new plot is generated, where the bonds are now represented as sticks.

Fig. 5: Cubane (III)

If colors can be displayed, one may represent balls and sticks in different colors. To achieve
this, control blocks have to be defined that are used to store information about colors, filling
patterns etc.

>ATF 1 1 3 1 21! grey for C atoms

>ATF 2 1 3 2 1! red for H atoms

>FRBS 1 C ' All C atoms point to block 1
>FRBS 2 H !' All H atoms point to block 2
>ATF 11 1 3 3 1 !' control block for the bonds
>0PK ' show plot commands

>APK 2 skkkkxxkx 11 I set pointer to block 11

>EPU

Now the balls and sticks should be represented according to the comments above.

Fig. 6: Cubane (IV)

You have probably noticed that there are much more (16) atoms on the screen than entered
in the parameter list (4). As mentioned above atoms in the parameter list are not plotted
automatically. Atoms which are supposed to be plotted have to be selected and stored
in a different list. The selection is done applying symmetries and translations along the
lattice axes. In KPLOT a coding is used which may be treated as a rule how to obtain the
coordinates of the atoms to be plotted from the atoms in the paramete r list, symmetries
and translations. It is the so called atom designator code, most times shortly called code.

A code is a number with 6-9 digits with the following meaning:

NR | TA | TB | TC | SYMNR
digit | 9876 | 5 4 3 2 1

NR is the position of an atom in the parameter list.

SYMNR is the position of a symmetry in the table of symmetries. Due to the fact

that the symmetry list can store up to 192 symmetries, digit 2 may range from
0,...,9,A,...,J(=19)

TA, TB and TC are translations increased by 5 in the directions of the base vectors of the
unit cell, e.g. “5” means no translation, “6” a translation by +1 etc.

In order to obtain the coordinates of an atom given by a code, divide the code into the
numbers NR, TA, TB, TC, and SYMNR, as shown above. Then take the coordinates of the
atom NR, apply the symmetry SYMNR, and add to x TA-5, to y TB-5, and to z TC-5.

Ezxample:

The code 345706 denotes an atom whose coordinates are found on the 3rd position in the
parameter list. To these parameters the symmetry is applied, which is found on the 6th
position in the list of symmetries. The result is finally shifted by -a and 2c. E.g., assume
the coodinates (.1,.2,.3) (in tricilinic coordinates) on the 3rd position of the parameter list
and the symmetry —x,1/2 4+ y,1/2 — z on the 6th position in the symmetry list, then the
code 345706 gives an atom with the coordinates (—1.1,0.7,2.2). Verify this!

Quite generally, atoms which are to be drawn have to be stored as codes in the codelist.
This may be done directly using the commands "ACI” or "ACIM’; however, this is done only
occasionally. Instead, leave the work to determine the codes of these atoms as much as
possible to the program! Most times one wants to specify certain regions of the crystal that
include the atoms that are to be plotted. Currently, three possibilities have been provided to
specify such regions: spheres, boxes oriented with respect to the lattice, and boxes relative
to a orthonormal system, the so-called free coordinate system.

Here, one of the most frequently used commands is ’ATB’. ATB means: add triclinic box.
We have already used it with the NaCl example above. The general syntax is:

ATB Cor, 11, N2, dl‘? dya dz

The name triclinic should remind one that the orientation and dimension of the box refers
to the unit cell, which is triclinic in general. In this sense, orthogonal cells are only special
cases. ¢, 18 a code defining the midpoint of the box, the origin. Walk from this point in the
direction +a and -a by ad, to meet the wall of the box parallel to b and ¢ (a,b,c are the unit
cell constants). Do the same with d,, and d, to define the other walls. As in the example above
Cor pointed to an atom with coordinates (0.5,0.5,0.5) and the values d, = d, = d, = 0.5
had been entered, all points could be reached that have triclinic coordinates between 0 and
1 in x, y, and z respectively. This region is searched for atoms having numbers between n;
and ny (target interval), inclusively. n; and ny point to the parameter list. In some sense
the complete codes of all atoms are searched having numbers between n; and ny and lying
in the specified box.

In the example above, a ”1” was specified for ¢,.. One would have expected ”155501”
because a code is required as input. But codes ending with ”55501” (effectively referring to
the original atom as stored in the parameter list) appear very often. Thus the ”55501” may
be omitted (as default KPLOT adds ”55501” automatically). This must not be confused
with the specifications for n; and no: no codes are allowed here.

Applying the ’ATB’ command to our last example, one gets:

>CC
>ATB 1 36 .5 .5 .5
>BF
>EPU

At first glance the result is somewhat surprising: instead of the complete molecule only
several scattered fragments are visible. If the outlines of the unit cell are added, it becomes

] &

}0,

O
P!

Fig. 7: Cubane (V)

obvious what has happened.

>GNZL ;
>BF
>EPU

Fig. 8: Cubane (VI)

The description of the molecule i.e. the coordinates of the atoms do not agree with the unit
cell. In each corner there is a fragment of the molecule.

We now want to complete these fragments to full molecules. We use a command which
searches the surrounding of the atoms (in the code list) found so far and adds the new ones
to the code list. Note that these new ones will also be taken into account during the search.
This process stops if no new atoms are found.

>AUW 3 4 34 1.7 ! Complete carbon surroundings

The command ’AUW’ must be handled with care, because the code list may overflow.

It remains to add the hydrogen atoms:

>AU 3456 1.3

>DK 1 15 ! To minimize overlap
>BF

>STPU

As a result, the packing of the molecules of cubane is produced. But only the stereoscopic
view allows to resolve the structure easily.

=D
%
f\E
ot

DR G
([Fml adLh
"\d’\!_,..{g,,\“‘ Y.
c:,,"'//' TPe y
0‘\(9 \ ;

Fig. 9: Cubane (VII)

Facilities for (geometric) constructions

Sometimes the problem arises that positions of atoms have to be calculated from known
geometric properties, but with respect to a (usually) triclinic cell. Let us consider the
following example: The solution of the crystal structure of tertiary tin sulfide (from film
data) gives the positions of the tin and the sulfur atoms, but no positions for the carbon
atoms could be extracted from the Fourier map. Here are the data:

>NDLG

>T ’Alpha Di-tertiary butyl tin sulfide’
>Z 6.323 16.50 12.117 90 114.94

>RG 1402

>AE 2

>ATOM Sn 1 .05079 .06656 -.08874 .4 4
>ATOM S 1 -.2803 .0425 -.0392 .4 6
>CLSE;DLG

As one can see, this is a monoclinic system. Applying 'FM’, a four-atoms ring is found
consisting of tin and sulfur (fig. 10):

Unfortunately this four-ring lies oblique in an oblique cell. It is expected that the tertiary
carbon atoms bonded to tin enclose approximately an angle of 109.5° C-Sn-C. The fastest
strategy to locate the tertiary C-atoms is as follows: Turn on the cross-hair cursor by "M’
("mouse on”), and click the (upper) tin atom and then both S atoms. The codes of the

10

Fig. 10: t-butyl tin sulfide (I)

atoms clicked are stored in a special list, the so called group list of codes or mouse list.
This list can be displayed by 'OGC’ or 'OGCF’ in short or detailed form, respectively. The
command used to calculate the coordinates for the C-atoms is "GZTU’ (”generate two points
in tetrahedral surrounding”). In our case:

>GZTU 0 0 C 3 0.3 2.2 x 0

Note that zeroes have been entered at three positions instead of codes to specify atoms. This
technique may be used in general (except if stated otherwise): If a code is expected by the
program and a zero is found, the code is taken from the mouse list. The result (after a new
'FM’ and some rotation around the x axis) looks as follows:

Fig. 11: t-butyl tin sulfide (II)

Now the primary C atoms have to be found. We click the upper right C atom and then the
Sn atom bonded to the C atom. Due to the fact that we do not know anything about the
orientation of the group, we ”leave” it to the program to make a decision. We enter:

>GDTU 0 O C 6 0.3 1.54 ! Generate two atoms in tetrah. surr.

This procedure is repeated using the C atom in the lower right corner. Again "FM’ is entered,
producing the plot:

11

Fig. 12: t-butyl tin sulfide (III)

This model may be used for a refinement cycle in a structure solution program.

There are not always suitable commands for calculating positions in such an easy way.
In those cases one has to use a set of more elementary commands, the so-called micro-
commands. These commands manipulate a single point only, stored on the so-called point
register. Using the example above, an alternative way how to obtain the locations of the
C-atoms will be discussed.

First, we use the four-ring found to define an orthonormal coordinate system (the free coor-
dinate system):

455503

Fig. 13: t butyl tin sulfide (IV)

This is done by

>K 3 355503 3 455503 4

With respect to this coordinate system, we define the point on the point register having
the desired distance but lying on the x-axis. Then this point is rotated around the y-axis
by half the angle desired, stored as C-atom in the parameter list, rotated in the opposite
direction by the full angle. This produces a new C atom having the calculated coordinates.
The sequence looks like:

12

> 2.2 00 Definition of a point on the x-axis

!
>DP 2 54.75 ! Rotation by 109.5/2

>AA C 1 ! Add as atom

>DP 2 -109.5 ! Rotate to the other direction
>AA C 2 ! and add as atom

The construction of the primary C-atoms is performed similarly. First, the coordinate system
is defined in a suitable way:

Fig. 14: t butyl tin sulfide (V)

>k 5 35 3 355503

Now the positions of the three C-atoms are calculated:

>P -1.54 00

>DP 3 109.5; AA C 3
>DP 1 120; AA C 4
>DP 1 120; AA C 5

The atoms bonded to atom no. 6 may be constructed in the same way, but there exists a
better method, because the second group is the mirror image of the first one. Note that the
mirror plane is no crystallographic symmetry. Therefore we have to define a mirror plane
ourselves. For this we define a coordinate system like we did in Fig. 13. Before we apply
this mirror symmetry to the group, we remove atom no. 6.

>EPL 6
>k 3 355503 3 455503 4
>SPG 58 3

Entering 'FM’ again, the complete molecule is found.

Using the knowledge gathered so far we are now going to attempt a more difficult task: We
want to build the structure of the fullerene C:

13

Fig. 15: C,

We proceed as follows: First, we define an arbitrary cubic cell with a=10.

>T ’Construction of C60°
>Z 10
>AE 2
>SE 1

Now we generate a pentagon:

>P 100
>GP 5 3 C 1 ! Generate 5 points

The edge lengths of this pentagon are 1.17557; this is not the value desired. Thus, after
setting the default value for group commands to 'R’ (replace) the pentagon is shrunk to one
with edge length equal 1.

>GOPT R ! Use replace option
>L 3 4 ! Deposits 1.17557 as default value
>FRG 3 7 2 ! Shrink pentagon by this factor

Each pentagon is surrounded by 5 hexagons. One point of the hexagons is determined using
"PAW’, because we do know the distance and angles:

>PAW 3 4 7 1 120 120 ! Generate one point of the hexagons

This point is now on the point register. We rotate the point around the z-axis generating 5
new points in the parameter list.

>GP 5 3 C 6 ! Generate five new points

The structure built so far looks as follows (fig. 16):

The atoms are labeled by their codes. This can be achieved using 'PSCD’. This may help
to find one’s way through the structure. Now we need the missing points of the hexagons.
For this we use the command "PZAA’ and the knowledge that the length of a diagonal in a
hexagon is twice the length of an edge.

14

Fig. 16: Pentagon with neighbouring atoms

>PZAA 8 4 3 1 2 | Point by two distances
>GP 5 3 C 11 I Rotate as usual

>PZAA 9 3 4 1 2 | The other point

>GP 5 3 C 16 I times five

The structure built so far looks as follows:

Fig. 17: Pentagons with next hexagons

Instead of continuing in this way, we now take the opportunity to learn an new technique.
It is a powerful tool that is used frequently. Since we already have a pentagon (atoms 3-8),
it would be clever to copy it and place it into the corner 8/13/22. This is done by 'KTG’.
KTG allows, so to say, to pick up a group (as if with a fork-lift), transport it, and deposit
it on a different location. In our case, this ”fork-lift” is the free coordinate system.

>K33437 ! Starting position ...

>SK I ... save.

>K 8 8 22 8 13 ! New analogue position

>KTG 5 6 A I Atoms 5 and 6 are transported and added

15

Now we would like to repeat this operation for the other symmetry equivalent atoms. The
simplest way to achieve this is by a fivefold rotation. For this we need to return to the
original coordinate system.

>KS

>PL 23

>GP 5 3 C 21 x 2
>PL 24

>GP 5 3 C 25 x 2

The result looks like:

Fig. 18: Concatenated pentagons

The rest of the bucky ball is found very easily: Since there is a center of symmetry, the
atoms found so far need only be mapped with respect to this center. But where exactly is
this center located?” Note that on the one hand it must lie on the c-axis, while on the other
hand it must lie on the perpendicular bisector of e.g. the atoms 3 and 8. It is this vector we
now have to construct.

>SP 3,,8 I Center of mass between atoms 3 and 8
>AA SP | store atom (no. 33) and
>K 33 3 8 2 2565601 ! define coordinate system.

The y-axis is the perpendicular bisector we searched. But where is the intersection point
with the c-axis? To find the intersection, we construct an auxiliary point x:

>P 010

>AA X

and calculate the intersection point of two vectors:

>SVV 33 34 2 255602

The last two auxiliary point are no longer needed, so we can remove them and store the
center of symmetry in the parameter list.

16

>EPL 33 34 ! Remove auxiliary points
>AA ZNRM ! and add center (no. 33)

All atoms are now mapped using this point as a center of inversion:

>Z2G 3 32 33 A ! Generate centered group and add

The bucky ball is now complete, but it has not yet the edge length desired. It must be
stretched:

>FDG 3 63 33 1.39

Now the (auxiliary) point no. 33 may be removed from the list:

>EPL 33

All the atoms belonging to the fullerene C,, are now in the parameter list. It remains to
generate the plot commands. This is most easily done using "FM’.

We have chosen an arbitrary cell in the example. If one wants to export the coordinates to
a different cell, they have to be recalculated. In order to do so, the command "ZTAK’ is
used. Via ZTAK a new cell is defined and the coordinates are transformed correspondingly.
Ezxample:

>ZTAK 27.8 27.8 27.8 90 90 90

Now the bucky ball is supposed to be brought to a position where the center of mass coincides
with the origin (0,0,0) and the twofold axes coincide with the lattice axes. In order to achieve
this, we need the center of mass again. In our case, the easiest way to generate the center
of mass is to use 'SPC’: The 60 atoms are loaded in the code list and the center of mass is
directly calculated:

>CC

>ACI 3 62

>SPC ;

>AA SP 1 ! The point gets assigned no. 63

The twofold axes we search for cross the bonds, where two hexagons are concatenated. We
select one (arbitrarily) and define the x-axis of the free coordinate system, e.g.

>K 63 4 9

Now we calculate the centers of mass (c.0.m.) between the designated atoms and define the
coordinate system using the c.o.m.s:

>Sp 4,,9

>AA SP 1

>SP 46, ,51

>AA SP 2

>K 63 63 64 63 65

17

Fig. 20: Starting position for coordinate transformation

First, this configuration is saved for future reference. Then a new coordinate system can be
defined:

>SK ! save coordinate system
>K 2 2 265501 2 256501 ! new coordinate system
>KTG 3 65 ! transform also aux. points

If the coordinates of the auxiliary points are shown on the screen (OA 63 65), one sees that
they are in the desired positions, and therefore the corresponding twofold axes point in the
desired directions. Thus the auxiliary points may now be removed: EPL 63 65 .

Indeed, the molecule possesses a high symmetry (the space group can be found using 'SFND’
and the program RGS (Hundt, 1997)). We introduce the (correct) space group Pm3 and
reduce the parameters:

>HMS PM-3
>RPSY 3 62

Only 3 atoms remain from the 60 needed for the description without symmetry information.
We can convince ourselves using 'F'M’ that the same picture is generated nevertheless.

18

Symmetries

Symmetries play an important role in crystal structures, but often it is impossible to deter-
mine all symmetries from the experimental data available. And even if a crystal structure
has been solved, a problem may remain: has symmetry been overlooked? And if so, which
space group has to be chosen and which transformations have to be performed to obtain the
new description?

The problem of finding a space group is also of increasing interest for quite a different sort of
structures - those occuring in computer simulations. The computing power availabe nowa-
days allows us to generate crystal structures in the computer. But these have to be classified
and analyzed, of course, and here no experimental data are available such as reflections or
the shape of the crystal.

KPLOT in combination with the program RGS offers a tool to answer those questions.

Let us first look at an easily understandable example: Which space group is to be assigned
to the Rhenium trioxide type? Clearly the problem is scale independent, so we assume
a=b=c="T7.0.

>2. 7
>SE 1
>AE 2
>ATOM Re 1 0
>ATOM 0 1 .5
>ATOM 0 1

>ATOM 0 1

Note that all atoms in the cell are given, as if the space group were P1.

The first step is to find the symmetries. This is done by using the command 'SEND’. Tf
default values are used for the tolerances, the following result is produced:

Tolg: 0.1000 Tols: 0.2500 Tolt: 0.2500

4-Axis [556]
4-Axis [565]
4-Axis [655]
3-Axis [644]
3-Axis [646]
3-Axis [664]
3-Axis [666]
2-Axis [546]
2-Axis [566]
2-Axis [645]
2-Axis [654]
2-Axis [656]
2-Axis [665]
A: 4 R: 556 P: 0.0000 0.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 4 R: 565 P: 0.0000 0.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 4 R: 655 P: 0.0000 0.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 3 R: 644 P: 0.0000 1.0000 1.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 3 R: 646 P: 0.0000 1.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)

19

A: 3 R: 664 P: 0.0000 0.0000 1.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 3 R: 666 P: 0.0000 0.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 2 R: 546 P: 0.0000 1.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 2 R: 566 P: 0.0000 0.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 2 R: 645 P: 0.0000 1.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 2 R: 654 P: 0.0000 1.0000 1.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 2 R: 656 P: 0.0000 0.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 2 R: 665 P: 0.0000 0.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)
Z1 0.00000 0.00000 0.00000 (0.000000)

First, KPLOT searches for ”candidates” for symmetry directions using the unit cell supplied
and a tolerance ”Tolg”, because the symmetries present must agree with the lattice. The
direction specifications in square brackets are to be interpreted as follows: subtract 5 from
each digit to obtain the true direction. The number 546 for example means: 0,-1,1. In
the example above it is seen that there are four-, three-, and twofold axes. This should be
expected when giving a cubic cell.

These candidates are then tested (using the tolerance ”Tols” in Angstroms), i.e. we check
whether they are really present in the structure. This is the case in the example chosen.
In the output, each symmetry is given by the axis (A:), the direction (R:), a point on
the symmetry element (P:), and a glide vector (G:). The numbers in brackets are the
maximal deviations between atoms in A after applying the symmetry and the corresponding
equivalent atoms. This value is a qualitative criterion for the fit of the symmetry found only.
Finally centres of symmetry (Tols) and translation symmetries (Tolt) are searched for. In
the example above, a centre is found.

This result is passed to the program RGS. RGS generates a file called RGS.OUT readable by
KPLOT containing the instructions how to transform the structure and which space group
is to be selected. In our case, RGS.OUT looks like:

NDLG

MTRI;

TZUR 0.00000 0.00000 0.00000

TZ 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000
RG 221 (Following Int. Tables 3rd edition; HMS: PM-3M)

RPSY * *x 0.5 -1; NPZ * x

CLSE;DLG

Of course the execution of these commands reduces the amount of parameters:

Atoms:
No Name X y Z r Clrpnt
3 Re 1 0.000000 0.000000 0.000000 0.3000 0
4 0 1 0.500000 0.000000 0.000000 0.3000 0

Question: What is the result, if (1) one O atom is replaced by an S atom, and (2) a second
O atom replaced by Se? Answers: (1) P4/mmm and (2) Pmmm. Verify this statement!

The recipe for testing, whether a space group assumed for a structure is the correct one, is
straightforeward under normal conditions:

20

SFND; ; (find symmetries, use defaults)

SYS RGS; (start program RGS, in this form under DOS)
GET; (program RGS reads the file FOROO7.DAT)
ANAL; (analyse input)

RGS; (search space group)

RTS; (if necessary result to file)

END; (terminate RGS)

GET RGS.0UT; (read file produced by RGS if written)

In version 8.4.0 and higher RGS has been integrated into KPLOT. So, the sequence above
may be shortened to

SFND; ; (find symmetries, use defaults)
RGS; (start subsystem RGS, do things automatically)
GET RGS.0UT; (read file produced by RGS if written)

One has to make sure that only one type of atoms are on the same position if statistical
occupation is present. If two or more atom types occupy the same position, one has to define
an additional atom type (e.g. called ”1”), that is placed on these positions.

The following structure was taken from the ICSD. Here it is rewritten as a KPLOT input:

NDLG

T ’COL= 15961 FORMEL:Y F3 Yttrium fluoride’

Z 5.64400

HMS °’P23 ’

AE 2

ATOM (3) Y ’ 71 ? 0.500000 0.500000 0.000000
ATOM (4) °F ? 71 ? 0.500000 0.500000 0.500000
ATOM (5) ’F ? 2 ’ 0.250000 0.250000 0.250000
ATOM (6) ’F ’ ’3 ? 0.750000 0.750000 0.750000
CLSE ; DLG

We note that space group P23 is used. If the check given above is performed, the space
group Pm3m (no. 221) is found, however.

Certain problems commonly arise when structures are studied that are found in computer
simulations. The reason is that the translational symmetry of the cell only reflects the peri-
odic boundary conditions of the simulation and is usually triclinic, in most cases distorted,
and occasionally contains additional translation symmetry (especially for large simulation
cell unless an amorphous structure is present). In these cases the result of the symmetry
analysis must be used in an intermediate step to idealize the cell.

The necessary sequence of steps is almost always the same, and can be executed by calling
the built-in macro "SST’.

1. The structure is made triclinic if not already so.

2. Tt is checked for tranlational symmetry, and the cell is reduced accordingly, if such a
symmetry is found. This step is repeated until the cell is primitive.

21

3. SFND is used to search for symmetries.
4. Using the symmetries found the cell is idealized.

5. Again the idealized structure is searched for symmetries, and type and number of
symmetries are compared to the result of the last run. If more symmetry has been
found, the procedure is continued at step 4. If nothing has changed, the task is finished.
If symmetry has been lost, an error message is issued, and the search for symmetries
is stopped.

Let us consider the example CaCl,, where the following structure was the result of a computer
simulation (given here in KPLOT notation):

Z 5.60068 5.30355 5.61138 90.09382 90.14352 89.92796
SE 1

AE 2

ATOM Ca 2 0.7678569 0.5873027 0.5678615
ATOM Ca -1 0.2674217 0.5933311 0.0684757
ATOM C1 0 0.2693682 0.0929764 0.0684085
ATOM C1 0 0.2679240 0.5904401 0.5681831
ATOM Cl1 0 0.7683695 0.5905680 0.0685028
ATOM C1 0 0.7689828 0.0876594 0.5682762

If the command ’SST” is given, one gets the following result (comments are given in brackets):

(Search for translation symmetry ...)

Tols: 0.2500 Tolt: 0.2500 Tolg: 0.1000 Ref: CA

T1 0.50000 0.00000 0.50000 (0.032246) (... found)

Tols: 0.2500 Tolt: 0.2500 Tolg: 0.1000 Ref: CA (... try again.)
(Search for symmetries ...)

Tols: 0.2500 Tolt: 0.2500 Tolg: 0.1000 Ref: CA

4-Axis [556 1

2-Axis [565]

2-Axis [655]

2-Axis [645]

2-Axis [665]

A: 4 R: 556 P: 0.3358 -0.1995 0.4097 G: 0.0000 0.0000 0.0000 (0.01748)
A: 2 R: 565 P: 0.8358 -0.1995 0.9097 G: 0.0000 0.0000 0.0000 (0.01840)
A: 2 R: 655 P: 0.3358 0.3005 1.4097 G: 0.0000 0.0000 0.0000 (0.01082)
A: 2 R: 645 P: 1.3358 -0.1995 0.9097 G: 0.0000 0.0000 0.0000 (0.01469)
A: 2 R: 665 P: 0.3358 0.8005 0.4097 G: 0.0000 0.0000 0.0000 (0.01984)
(... and idealize cell.)

Tolerances for distances: 0.100, angles: 4.000 and planes: 0.700 opt= 2.0
Idealisation according to type 4

Transformed old basis:

-1.0000 0.0000 0.0000 0.0000-1.0000 0.0000 0.0000 0.0000 1.0000
(Search again for symmetries.)

Tols: 0.2500 Tolt: 0.2500 Tolg: 0.1000 Ref: CA

4-Axis [556]

2-Axis [565]

22

2-Axis [655

]
2-Axis [645]
2-Axis [665]
A: 4 R: 556 P: 0.6642 0.1995 0.4097 G: 0.0000 0.0000 0.0000 (0.01218)
A: 2 R: 565 P: 0.6642 0.1995 0.4097 G: 0.0000 0.0000 0.0000 (0.01356)
A: 2 R: 655 P: -0.3358 0.1995 0.4097 G: 0.0000 0.0000 0.0000 (0.01080)
A: 2 R: 645 P: -0.3358 0.1995 1.4097 G: 0.0000 0.0000 0.0000 (0.00198)
A: 2 R: 665 P: -0.3358 1.1995 0.9097 G: 0.0000 0.0000 0.0000 (0.01218)
Z 1 0.16419 0.19947 0.40968 (0.017334) (Nothing new found.)

RGS finds space group P4/mmm, and writes a file for KPLOT:

NDLG

MTRI;

TZUR 0.16419 -0.300563 0.40968

TZ 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000

RG 123 (Following Int. Tables 3rd edition; HMS: P4/MMM)

RPSY *x x -2.0 -1; NPZ * =*

CLSE;DLG

The result:

Cell constants:

3.9641 3.9641 5.3035 90.0000 90.0000 90.0000 Vol = 83.34

ax = 0.25227 bx = 0.25227 c*x = 0.18855 al*x = 90.00 bex = 90.00 ga*x = 90.00
Symmetries (Spg. No. 123 P4/MMM):

1) X, Y, Z

2) -X, -Y, Z

18) -y, -X, -Z

16) Y, X, -Z

Atoms:

No Name x y z r Clrpnt

3 Ca 2 0.500000 0.500000 0.000000 0.3000 O
4 C1 0 0.500000 0.500000 0.500000 0.3000 O
5 C1 0 0.000000 0.000000 0.000000 0.3000 O

Note that the new cell is smaller and has been re-arranged.

The next example is given as an exercise, and only the final result is given. A computer
simulation of MgF, produced the following structure:

NDLG
Z 3.096 4.020 5.34 89.82 90.03 89.81
AE 2
SE 1
ATOM Mg 1 .3288806 .7613257 .9816873
ATOM Mg 2 .8304403 .7591122 .4817613
ATOM F 1 .3300893 .9868472 .6475843

23

ATOM F 2 .8282566
ATOM F 3 .3307128
ATOM F 4 .8298074

.9870328
.5330645 .3153760
.5333360 .8154464

.1482460

CLSE;DLG

The space group P3m1 is found, and after performing the transformations suggested, the
result is:

Cell constants:

3.0863 3.0863 4.0200 90.0000 90.0000 120.0000 Vol = 33.16
ax = 0.37414 bx = 0.37414 c*x = 0.24876 al*x = 90.00 bex = 90.00 gax = 60.00
Symmetries (Spg. No. 164 P3-M1):
1 X, Y, 2
2 -Y, X-Y, Z
12) X-v, -Y, -Z
Atoms:
No Name X y z r Clrpnt
3 Mg 1 0.000000 0.000000 0.500000 0.3000 0
4 F 1 0.333333 0.666667 0.726870 0.3000 0

The two following examples are given to illustrate that it is sometimes advisable not to
transform back to the original cell after idealisation because the transformed cell agrees
better with the symmetries. But it is necessary then to add centering symmetries, in case
the cell becomes bigger, or to remove redundant atoms and duplicate symmetries, in case
the cell becomes smaller.

First, here is a very simple example, the primitive version of NaCl:

NDLG

Z 3.96 * *x 60 60 60
SE 1

AE 2

ATOM Na 1 0 0 O
ATOM C1 1 .5 .5 .5
CLSE;DLG

Searching for symmetries with SFND generates the following output:

Tolg: 0.1000 Tols:
4-Axis [644]
4-Axis [646]

0.2500 Tolt: 0.2500

2-Axis [654]

A: 4 R: 644 P: 1.0000 1.0000 1.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 4 R: 646 P: 0.0000 0.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 4 R: 664 P: 0.0000 0.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 3 R: 666 P: 0.0000 0.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 3 R: 626 P: 1.0000 1.0000 1.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 3 R: 662 P: 1.0000 1.0000 1.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 3 R: 844 P: 0.0000 0.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)

A: 2 R: 556 P: 0.0000 0.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 2 R: 565 P: 0.0000 0.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 2 R: 655 P: 0.0000 0.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 2 R: 546 P: 0.0000 1.0000 0.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 2 R: 645 P: 0.0000 1.0000 1.0000 G: 0.0000 0.0000 0.0000 (0.00000)
A: 2 R: 654 P: 0.0000 1.0000 1.0000 G: 0.0000 0.0000 0.0000 (0.00000)

Z1 0.00000 0.00000 0.00000 (0.000000)
Cell extremely distorted. A transformation is necessary.

The hint that the cell is distorted usually has to be taken seriously. Idealizing and setting
opt=2 one gets:

>ZIDL * * x 2

Idealisation according to type 6

The new cell volume is 4.00000 times the old one.

Transformed old basis:

-0.5000-0.5000 0.0000 -0.5000 0.0000-0.5000 0.0000-0.5000-0.5000

The fourfold axes found are used to define a new cell. Because the cell has been enlarged,
centering symmetries have to be introduced. These can be derived from the transformed old
basis. But since we had specified opt=2, the program takes care of this automatically. The
result:

Cell constants:

5.6003 5.6003 5.6003 90.0000 90.0000 90.0000 Vol = 175.64
ax = 0.17856 bx = 0.17856 c*x = 0.17856 al*x = 90.00 bex = 90.00 gax = 90.00
Symmetries:
1 X, Y, 2

2) 1/2+X, 1/2+Y, Z
3) 1/2+X, Y, 1/2+Z
4) X, 1/2+Y, 1/2+Z

Atoms:
No Name X y z r Clrpnt
3 Na 1 0.000000 0.000000 0.000000 0.3000 0
4 C1 1 -0.500000 -0.500000 -0.500000 0.3000 0

The second example is again the result of a computer simulation. The packing of a AB,
structure was studied and for technical reasons an atom E introduced (representing a pair
of electrons). The following configuration was encountered:

NDLG

Z 4.92161 3.78057 9.67181 82.36315 94.18374 76.33431
SE 1

AE 2

ATOM B 0 .1744231 .1195827 .7929490

ATOM B 0 .0691554 .8584730 .8504569

ATOM E 0 .1217892 .9890279 .8217030

ATOM B 0 .05690812 .3621287 .3441971

ATOM B 0 .1635934 .6309381 .2933850

25

ATOM E O .1113373 .4965334 .3187910
ATOM B 0 .5618897 .6118708 .0955053
ATOM B 0 .6699524 .8768132 .0442606
ATOM E O .6159210 .7443420 .0698830
ATOM B 0 .5702492 .0828383 .5980743
ATOM B 0 .6732230 .3530475 .5471899
ATOM E 0 .6217361 .2179429 .5726321
ATOM A 1 .6088738 .9846342 .3203271
ATOM A 1 .6222734 .4815717 .8203067
ATOM A 1 .1182584 .2514962 .0686944
ATOM A 1 .1210187 .7278109 .5711045
CLSE;DLG

The analysis of symmetries produced the following output:

>SFND; ;

Tolg: 0.1000 Tols: 0.2500 Tolt: 0.2500

Z 1 0.12179 0.48903 0.32170 (0.140502)
Z 2 0.11656 0.24278 0.07025 (0.215567)
Z 3 0.36886 0.36668 0.44579 (0.095926)
Z 4 0.36363 0.12044 0.19434 (0.188356)
T1 0.00000 0.50000 0.50000 (0.130639)
T 2 0.50000 0.25000 0.75000 (0.142718)
T3 0.50000 0.75000 0.25000 (0.142718)

Symmetry T1 is an A-centering while T2 is an unconventional centering. These centerings
are processed using the command 'ITS’, followed by another ’SFND’:

>ITS;
Symmetries 0.K.
Symmetries 0.K.

>SFND; ;
Tolg: 0.1000 Tols: 0.2500 Tolt: 0.2500
2-Axis [655

]
2-Axis [546]

2-Axis [566]

2 R: 655 P: 0.2592 0.5238 0.6923 G: 0.0000 0.0000 0.0000 (0.10034)
2 R: 546 P: 0.2592 0.0238 0.6923 G: 0.0000 0.0000 0.0000 (0.05097)
2 R: 566 P: -0.2408 -0.4762 1.1923 G: 0.0000 0.0000 0.0000 (0.04524)
1 0.25920 0.02381 0.19229 (0.017376)

N = = =

New translational symmetry has not been found. But now the cell is distorted with respect
to the symmetries found. Therefore, it must be idealized.

>ZIDL***2

Idealisation according to type 3

The new cell volume is 2.00000 times the old one.

Transformed old basis:

0.0000 1.0000 0.0000 =-0.5000 0.0000 0.5000 0.5000 0.0000 0.5000

26

What now happens is the following: When transforming to the cell indicated by the symme-
tries found, the cell is enlarged. Consequently centering symmetries have to be introduced.
The result so far is:

Cell constants:

4.3972 3.1970 6.1287 90.0000 90.0000 90.0000 Vol = 86.16
ax = 0.22742 bx = 0.31279 c* = 0.16317 al*x = 90.00 bex = 90.00 gax = 90.00
Symmetries:
1 X, Y, 2
2) 1/2+X, Y, 1/2+Z
Atoms:
No Name b4 y z r Clrpnt
3 B 0 -1.166568 1.759190 0.252026 0.3000 0
4 B O -1.664955 1.759211 -0.035932 0.3000 0
5 E O -1.665761 1.759201 -0.141953 0.3000 0
6 A 1 -0.664548 1.257822 -0.641938 0.3000 0

The command "'SEFND’ and passing the result to RGS results in:

NDLG

MTRI;

TZUR 0.25920 -0.16576 0.14195

TZ 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000
RG 65 (Following Int. Tables 3rd edition; HMS: CMMM)

RPSY * *x 0.5 -1; NPZ * x

CLSE;DLG

If the transformations are performed as suggested, one gets finally:

Cell constants:

4.3972 6.1287 3.1970 90.0000 90.0000 90.0000 Vol = 86.16
ax = 0.22742 bx = 0.16317 cx = 0.31279 al* = 90.00 bex = 90.00 gax = 90.00
Symmetries (Spg. No. 65 CMMM):
1) X,V, Z

2) -X, -Y, Z

16) 1/2+X, 1/2-Y, Z

Atoms:
No Name X y z r Clrpnt
3 B 0 0.000000 0.606021 0.500000 0.3000 0
4 E O 0.500000 0.000000 0.500000 0.3000 0
5 A 1 0.500000 0.500000 0.000000 0.3000 0

Since the steps taken to find the symmetries and to idealize the cell in most cases follow the
same scheme, there exists a built-in macro ’SSI” (search symmetries and idealize) to do this
job. But note that at many places in the macro-command "SSI’ default values are used in
the individual commands, which cannot be changed.

Another application where RGS may be used should be mentioned. In the International
Tables, with each space group the maximal non-isomorphic subgroups are listed. But this

27

often leads to a non-standard setting, and the question arises: How can we transform to the
standard setting?

In the tables, with each subgroup a list of symmetries remaining in this subgroup is given.
These are ”input” into RGS, and a search for the space group is performed.

Ezxample:
A subgroup of P3m1 is e.g. C2/m if the symmetries 1,4,7, and 10 are kept.

>Z % *x % k% 120 Because we have a trigonal system

!
>SY ’Y,X,-2° ! Symmetry 4, 1 must be omitted!!
>ST -1 ! Symmetry 7, may also be entered as
' sy ’-x,-y,-z’. Symmetry 10 may be
! omitted, because it is generated when
! building the group.
>ANAL ! May not be omitted.
>RGS ! Seach the space group.

The commands are explained in detail in the RGS manual. The result is (finally printed to
screen):

No origin shift necessary.
TZ -1.0000 1.0000 0.0000 -1.0000 -1.0000 0.0000 1.0000 -1.0000 1.0000
It is space group C2/M no 12

In version 8.3.0 and later, Kplot supports building of symmetry-trees. For all space groups
(in their “standard setting”) the maximal non-isomorphic space groups are tabulated, and
one way (often there are several) to perform this transformation. The command is TUG,
which will either list those subgroups or perform a transformation. EFzample:

>rg 225

>tug O

Maximal subgroups of Fm-3m (No. 225)
Symbol No. Index Block

(1) I4/mmm 139 3 1

(2) R-3m 16601 4 1

(3) Fm-3 202 2 1

(4) F432 209 2 1

(5) F-43m 216 2 1

(6) Pm-3m 221 4 2A

(7) Pn-3m 22402 4 2A

If the transformation is supposed to be not only listed but also to be implemented, the
space group number listed in the third column has to be given as parameter with TUG or the
number of the first column as negative number.

Another useful command is SPUG (search path to subgroup). One enters the “starting” space
group and the “target” space group, and the program tries to find sequences of subgroups
that are as short as possible. Framples:

28

>spug 225 14
(1) Fm-3m 225 R-3m 16601 C2/m 1202 P21/c 1402

>spug 225 15
(1) Fm-3m 225 R-3m 16601 C2/m 1202 C2/c 1502
(2) Fm-3m 225 R-3m 16601 R-3c 16701 C2/c 1502

The compounds Se,[Mo,0,Cl] and (Se,),[HfCl;][Mo,0,ClL] (M. Kellner, 2001) crystallize
in the space group P21/c (14). Both compounds are isotypic and may be derived from the
NaCl type. How should one reduce the symmetry?

The path has been given above. However, one has to be careful because the transformations
and the paths are not unique.

Starting point: Fm3m, Na: 4a, Cl: 4b, a=5.6, V=175.6.

The first transformation to R3m is translationsgleich of index 4. However, Kplot transforms
to the rhombohedral setting. If a transformation to the hexagonal setting is wanted, two
commands must follow.

>TUG 16601 ! Transform to the first subgroup,
>RTHO ! and then to the hexagonal setting.
>RG 16602 ! Load "correct" space group.
>tug, ! Show maximal non-isomorphic subgroups.
Maximal subgroups of R-3m (No. 16602)
Symbol No. Index Block
(1) R32 15501 2 1
(2) R-3 14801 2 1
(3) R3m 16001 2 1
(4) C2/m 1202 3 1
(5) P-3mi 164 3 2B
(6) R-3c 16701 2 2B

The result: a = 3.9598, ¢ = 9.6995, V' = 131.7, Na: 3a, Cl: 3b.

From the list above, one sees that the next step to C2/m is translationengleich of index 3.
TUG -4

The result: a = 6.8586, b = 3.9598, ¢ = 3.9598, § = 54.7356, V = 87.81, Na: 2a, Cl: 2d.

The resulting cell has only half the desired volume, i.e. an isomorphic transfomation is
necessary in order to obtain the “correct” cell. How does one find this transformation?

The following considerations lead to an efficient solution: The a- and the b-axes may not be
altered except for the opposite directions; following the Int. Tab. only a transformation of
block IIc with ¢/ = 2¢ can be used.

OTM 1 ! Reset the transformation matrix.
TIM100 010 002

29

To find the standard setting one can leave KPLOT and use the program RGS:
SRGS temp.dat
and then in program RGS:

GET temp.dat
RGS
RTF RGS.OUT

back to Kplot:

IMP RGS.OUT ! Import result from RGS
0TM O ! Show result.

Result: TZ -1 0 0 010 10 -2
a = 6.8586, b = 3.9598, ¢ = 6.8586, 3 = 109.47, V = 175.6 Na: 2a and 2d, CI: 4i.

(A different way to find the last transformation may would to use the command *SZ’, which
is preferable if the target cell is already known.)

30

